Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Many cytoskeletal networks consist of individual filaments that are organized into elaborate higher-order structures. While it is appreciated that the size and architecture of these networks are critical for their biological functions, much of the work investigating control over their assembly has focused on mechanisms that regulate the turnover of individual filaments through size-dependent feedback. Here, we propose a very different, feedback-independent mechanism to explain how yeast cells control the length of their actin cables. Our findings, supported by quantitative cell imaging and mathematical modeling, indicate that actin cable length control is an emergent property that arises from the cross-linked and bundled organization of the filaments within the cable. Using this model, we further dissect the mechanisms that allow cables to grow longer in larger cells and propose that cell length–dependent tuning of formin activity allows cells to scale cable length with cell length. This mechanism is a significant departure from prior models of cytoskeletal filament length control and presents a different paradigm to consider how cells control the size, shape, and dynamics of higher-order cytoskeletal structures.more » « less
-
Intracellular protein gradients serve a variety of functions, such as the establishment of cell polarity or to provide positional information for gene expression in developing embryos. Given that cell size in a population can vary considerably, for the protein gradients to work properly they often have to be scaled to the size of the cell. Here, we examine a model of protein gradient formation within a cell that relies on cytoplasmic diffusion and cortical transport of proteins toward a cell pole. We show that the shape of the protein gradient is determined solely by the cell geometry. Furthermore, we show that the length scale over which the protein concentration in the gradient varies is determined by the linear dimensions of the cell, independent of the diffusion constant or the transport speed. This gradient provides scale-invariant positional information within a cell, which can be used for assembly of intracellular structures whose size is scaled to the linear dimensions of the cell, such as the cytokinetic ring and actin cables in budding yeast cells.more » « less
-
How cells tune the size of their subcellular parts to scale with cell size is a fundamental question in cell biology. Until now, most studies on the size control of organelles and other subcellular structures have focused on scaling relationships with cell volume, which can be explained by limiting pool mechanisms. Here, we uncover a distinct scaling relationship with cell length rather than volume, revealed by mathematical modeling and quantitative imaging of yeast actin cables. The extension rate of cables decelerates as they approach the rear of the cell, until cable length matches cell length. Further, the deceleration rate scales with cell length. These observations are quantitatively explained by a ‘balance-point’ model, which stands in contrast to limiting pool mechanisms, and describes a distinct mode of self-assembly that senses the linear dimensions of the cell.more » « less
-
In isogenic microbial populations, phenotypic variability is generated by a combination of stochastic mechanisms, such as gene expression, and deterministic factors, such as asymmetric segregation of cell volume. Here we address the question: how does phenotypic variability of a microbial population affect its fitness? While this question has previously been studied for exponentially growing populations, the situation when the population size is kept fixed has received much less attention, despite its relevance to many natural scenarios. We show that the outcome of competition between multiple microbial species can be determined from the distribution of phenotypes in the culture using a generalization of the well-known Euler–Lotka equation, which relates the steady-state distribution of phenotypes to the population growth rate. We derive a generalization of the Euler–Lotka equation for finite cultures, which relates the distribution of phenotypes among cells in the culture to the exponential growth rate. Our analysis reveals that in order to predict fitness from phenotypes, it is important to understand how distributions of phenotypes obtained from different subsets of the genealogical history of a population are related. To this end, we derive a mapping between the various ways of sampling phenotypes in a finite population and show how to obtain the equivalent distributions from an exponentially growing culture. Finally, we use this mapping to show that species with higher growth rates in exponential growth conditions will have a competitive advantage in the finite culture.more » « less
An official website of the United States government
